Read Anywhere and on Any Device!

Special Offer | $0.00

Join Today And Start a 30-Day Free Trial and Get Exclusive Member Benefits to Access Millions Books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Lagrange and Finsler Geometry: Applications to Physics and Biology (Fundamental Theories of Physics)

Unknown Author
4.9/5 (26109 ratings)
Description:Since 1992 Finsler geometry, Lagrange geometry and their applications to physics and biology, have been intensive1y studied in the context of a 5-year program called "Memorandum ofUnderstanding," between the University of Alberta and "AL.1. CUZA" University in lasi, Romania. The conference, whose proceedings appear in this collection, belongs to that program and aims to provide a forum for an exchange of ideas and information on recent advances in this field. Besides the Canadian and Romanian researchers involved, the conference benefited from the participation of many specialists from Greece, Hungary and Japan. This proceedings is the second publication of our study group. The first was Lagrange Geometry. Finsler spaces and Noise Applied in Biology and Physics (1]. Lagrange geometry, which is concerned with regular Lagrangians not necessarily homogeneous with respect to the rate (i.e. velocities or production) variables, naturalIy extends Finsler geometry to alIow the study of, for example, metrical structures (i.e. energies) which are not homogeneous in these rates. Most Lagrangians arising in physics falI into this class, for example. Lagrange geometry and its applications in general relativity, unified field theories and re1ativistic optics has been developed mainly by R. Miron and his students and collaborators in Romania, while P. Antonelli and his associates have developed models in ecology, development and evolution and have rigorously laid the foundations ofFinsler diffusion theory [1] .We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Lagrange and Finsler Geometry: Applications to Physics and Biology (Fundamental Theories of Physics). To get started finding Lagrange and Finsler Geometry: Applications to Physics and Biology (Fundamental Theories of Physics), you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
9048146569

Lagrange and Finsler Geometry: Applications to Physics and Biology (Fundamental Theories of Physics)

Unknown Author
4.4/5 (1290744 ratings)
Description: Since 1992 Finsler geometry, Lagrange geometry and their applications to physics and biology, have been intensive1y studied in the context of a 5-year program called "Memorandum ofUnderstanding," between the University of Alberta and "AL.1. CUZA" University in lasi, Romania. The conference, whose proceedings appear in this collection, belongs to that program and aims to provide a forum for an exchange of ideas and information on recent advances in this field. Besides the Canadian and Romanian researchers involved, the conference benefited from the participation of many specialists from Greece, Hungary and Japan. This proceedings is the second publication of our study group. The first was Lagrange Geometry. Finsler spaces and Noise Applied in Biology and Physics (1]. Lagrange geometry, which is concerned with regular Lagrangians not necessarily homogeneous with respect to the rate (i.e. velocities or production) variables, naturalIy extends Finsler geometry to alIow the study of, for example, metrical structures (i.e. energies) which are not homogeneous in these rates. Most Lagrangians arising in physics falI into this class, for example. Lagrange geometry and its applications in general relativity, unified field theories and re1ativistic optics has been developed mainly by R. Miron and his students and collaborators in Romania, while P. Antonelli and his associates have developed models in ecology, development and evolution and have rigorously laid the foundations ofFinsler diffusion theory [1] .We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Lagrange and Finsler Geometry: Applications to Physics and Biology (Fundamental Theories of Physics). To get started finding Lagrange and Finsler Geometry: Applications to Physics and Biology (Fundamental Theories of Physics), you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
9048146569
loader